圆的周长L公式是L = 2πr 或者 L =πl,
其中π为圆周率,是一个常数, 约为3.141592654,r为圆的半径,l为圆的直径。
例如: 直径为单位1的圆,其周长为: L=πl=1xπ=π 约等于 3.141。
若用半径表示则为: r=l/2=1/2, L=2πr=2x1/2xπ=π 约等于3.141。
扩展阅读:
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
参考资料: 百度百科 - π
圆的周长=圆周率×直径
c=πd
圆的周长=圆周率×2×半径c=2πr
1.到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心,通常用字母“o”表示。
2.连接圆心和圆周上任意一点之间的连线叫做半径,通常用字母“r”表示。
3.通过圆心并且两个端点都在圆周上的线段叫做直径,通常用字母“d”表示。
垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于过切点的半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
圆的周长: C=2πr=πd(r为半径,d为直径)。
圆的面积计算公式:
扩展资料:
圆的性质
⑴圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比正方形、长方形、三角形的面积大。
参考资料:百度百科---圆
圆周长的计算
1、圆周长=圆周率×直径,字母公式:C=πd。
2、圆周长= 圆周率×半径×2,字母公式:C=2πr。
围成圆的曲线的长就是圆的周长。圆周长的长短,取决于圆的直径(半径)。
圆周率是指圆周长和它直径的比值。
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) 2 + (y - b) 2 = r 2。其中,o是圆心,r 是半径。
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。
对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。
把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。
圆的周长公式为C(周长)=2πr(半径)或者C=πd(直径)。因此,圆的直径d=C(周长)/π。其中π是圆周率,是有固定数值的,一般取值π=3.14。
圆:圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。
半径:连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)
直径:通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。圆的直径 d=2r
圆的周长=圆周率×直径
c=πd
圆的周长=圆周率×2×半径c=2πr
1.到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心,通常用字母“o”表示。
2.连接圆心和圆周上任意一点之间的连线叫做半径,通常用字母“r”表示。
3.通过圆心并且两个端点都在圆周上的线段叫做直径,通常用字母“d”表示。
4.连接圆上任意两点的线段叫做弦。 在同圆或等圆中,最长的弦是直径。
5.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。
扩展资料
垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于过切点的半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
切割线定理: 圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB
割线定理 :与切割线定理相似——同圆上两条割线m、n交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点
则pA1·pB1=pA2·pB2(可以把切割线定理看做是割线定理的极限情形)。
参考资料:圆柱的百度百科
圆的周长=圆周率×直径
c=πd
圆的周长=圆周率×2×半径c=2πr
1、到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心,通常用字母“o”表示。
2、连接圆心和圆周上任意一点之间的连线叫做半径,通常用字母“r”表示。
3、通过圆心并且两个端点都在圆周上的线段叫做直径,通常用字母“d”表示。
扩展资料:
一、圆的面积公式
圆的面积计算公式:S=πr2或S=πd2÷4或C2÷(4π)
把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。
圆锥侧面积:S=πrl (l为母线长)
二、弧长角度公式
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
扇形面积S=nπ R2/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
参考资料来源:百度百科-圆周长
圆的周长公式:周长L=2πr(其中r为圆的半径,π为圆周率,通常情况下取3.14)
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
扩展资料:
圆的面积:S=πr2(其中r为半径)
其他图形周长公式:
1.三角形的周长C = a+b+c(abc为三角形的三条边)
2.四边形:C=a+b+c+d(abcd为四边形的边长)
3.特别的:长方形:C=2(a+b) (a为长,b为宽)
4.正方形:C=4a(a为正方形的边长)
5.多边形:C=所有边长之和。
6.扇形的周长:C = 2R+nπR÷180? (n=圆心角角度) = 2R+kR (k=弧度)
参考资料:百度百科-周长
圆周长计算公式:周长L=2πr=πd,其中π为圆周率,r为半径,d为直径。
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
扩展资料:
与圆相关的公式:
1、圆面积:S=πr2,S=π(d/2)2。(d为直径,r为半径)。
2、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
3、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
其他图形周长面积计算公式:
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a
l = n(圆心角)× π(圆周率)× r(半径)/180=α(圆心角弧度数)× r(半径)
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πr,所以n°圆心角所对的弧长为l=n°πr÷180°(l=n°x2πr/360°)
例:半径为1cm,45°的圆心角所对的弧长为
l=nπr/180
=45×π×1/180
=45×3.14×1/180,约等于0.785。
扩展资料:
与弧长有关的是扇形的面积,扇形面积公式:S(扇形面积)=nπR^2/360,n为圆心角的度数,R为底面圆的半径。
圆弧用符号“⌒”表示。例如,以A、B为端点的圆弧读做圆弧AB或弧AB。大于半圆的弧叫优弧,小于半圆的弧叫劣弧。圆弧的度数是指这段圆弧所对圆心角的度数。
半圆也是弧,连接AB两点的直线是弦AB,半圆既不是劣弧也不是优弧,它是区分劣弧和优弧的一个界限。
参考资料:百度百科-弧长计算公式