洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
应用条件:
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
扩展资料:
洛必达是法国中世纪的王公贵族,他喜欢并且酷爱数学,后拜伯努利为师学习数学。知名的洛必达法则,其实并非洛必达本人研究,而是他的师父伯努利。
当时由于伯努利境遇困顿,生活困难,而学生洛必达又是王公贵族,洛必达表示愿意用财物换取伯努利的学术论文,伯努利也欣然接受。“洛必达法则”的内容:
对于一定条件下的不定式求极限问题,可以先对分母和分子求导后再求极限,比如0/0型:
简要分析:对于各种存在极限的不定式,比如0^∞,∞^0, ∞/∞,1^∞, ∞-∞等等,一般都可以化为0/0型,两个函数的极限都趋于一个点,那么从他们曲线上来看,该点处他们函数极限值的比值,其实就是他们在此处切线斜率之比,也就是求导后的函数,在此处的值之比。
参考资料:百度百科——洛必达法则
具体回答如图:
证明中,在x和一个接近a的值b之间利用柯西中值定理就是合理的,然后再让b和x同时趋向a。
两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。
扩展资料:
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
参考资料来源:百度百科——洛必达法则
分式满足0/0或∞/∞型未定式,即分子分母极限均为0.
当有一个极限不存在时(不包括∞情形),就不能用洛必达法则,可用其他方法如泰勒公式等.
这个很明显了,t*f(t)是常量,对x求导后,它没有了。就剩下f(t)dt
当分母、分子同时趋向0或同时趋向无穷即0/0、∞/∞型时,可用洛必塔法则。
A就是一个常数(包括0),意思是,当你求极限满足0/0时,只要你分子和分母同时求了一次导后极限存在(包括0/0),就可以使用洛比达法则
举例:lim(x->+无穷)(x^2-1)/(2x^2+2x+1)
=lim(x->+无穷)(2x)/(4x+2)
=lim(x->+无穷)2/4
=1/2
参考资料:http://baike.baidu.com/view/420216.htm?fr=ala0
在数学求极限的时候 如果这个式子是未定式 即0/0 或者无穷大/无穷大时 可以换成上下两个式子导数的比 这个应用的就是洛比达法则