h=2×S△÷a
三角形的高等于面积×2÷底
S=1/2底×高用a表示底,h表示高:h=2S/a
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
定法一:
1、锐角三角形:三角形的三个内角都小于90度。
2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。
3、钝角三角形:三角形的三个内角中有一个角大于90度。
判定法二:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
参考资料:百度百科——三角形
三角形的高的计算公式是:h=2×S△÷a(S△是三角形的面积,a是三角形的底)
解题思路:
三角形高的计算公式是在三角形的面积公式的基础上反推出来的。
三角形的面积计算公式:S△=1/2ah (a是三角形的底,h是底所对应的高)
所以三角形的高的计算公式是:h=2×S△÷a
(面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。
2、三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
3、三角形的高是指从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高(altitude)。
三角形的高的计算公式是:h=2×S△÷a(S△是三角形的面积,a是三角形的底)
解题思路:
三角形高的计算公式是在三角形的面积公式的基础上反推出来的。
三角形的面积计算公式:S△=1/2ah (a是三角形的底,h是底所对应的高)
所以三角形的高的计算公式是:h=2×S△÷a
(面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。
2、三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
3、三角形的高是指从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高(altitude)。
三角形的高的计算公式是:h=2×S△÷a(S△是三角形的面积,a是三角形的底。)
解题思路:
三角形高的计算公式是在三角形的面积公式的基础上反推出来的。
三角形的面积计算公式:S△=1/2ah (a是三角形的底,h是底所对应的高。)
所以三角形的高的计算公式是:h=2×S△÷a
扩展资料:
三角形判定:
1、两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS";
2、两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”;
3、两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”;
4、两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”;
5、两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“斜边、直角边”或“HL”;
注:“边边角”即“SSA”和“角角角”即:"AAA"是错误的证明方法。
等腰三角形底边上的垂直平分线到两条腰的距离相等。等腰三角形的一腰上的高与底边的夹角等于顶角的一半。等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
参考资料来源:百度百科——三角形
高=面积×2÷底,底=面积×2÷高。
分析过程如下:
从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高。
所以,由定义知,三角形的高是一条线段。由于三角形有三条边,所以三角形有三条高,由此三角形的面积也有三种算法。其中有等积法。
三角形的面积=1/2×底×高。由此可得:高=面积×2÷底,底=面积×2÷高。
扩展资料:
三角形的性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
利用三角形的面积公式。得三角形的高=2×三角形的面积÷底。
分析过程如下:
三角形的面积公式是S=1/2bh。
S = 三角形的面积。
b = 三角形底边长。
h = 三角形底边的高。
由此可得:三角形的高=2×三角形的面积÷底。
扩展资料:
三角形的性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形的高的计算公式是:h=2×S△÷a(S△是三角形的面积,a是三角形的底)
解题思路:
三角形高的计算公式是在三角形的面积公式的基础上反推出来的。
三角形的面积计算公式:S△=1/2ah (a是三角形的底,h是底所对应的高)
所以三角形的高的计算公式是:h=2×S△÷a
如图
三角形面积=底×高÷2
三角形高=面积×2÷底
所有三角形的高
=176×2÷22
=16米
另平行四边形面积=底×高
平行四边形高=平行四边形面积÷底
三角形的面积公式:三角形的面积=底×高÷2。三角形的高=2×三角形的面积÷底。
分析过程如下:
三角形的面积=底×高÷2。其中高是底边上对应的高,等式两边同时乘以2可得:
2×三角形的面积=底×高,等式两边除以底可得:三角形的高=2×三角形的面积÷底。
扩展资料:
三角形的性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
根据海伦公式求得面积:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
2、由面积=底X高/2,求得高的长度。