连笔字网今天精心准备的是《圆》,下面是详解!
1.圆的周长C=2πr=πd
2.圆的面积S=πr2
3.扇形弧长l=nπr/180
4.扇形面积S=nπr2/360=rl/2
5.圆锥侧面积S=πrl
〖圆的定义〗
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
扩展资料:
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) 2 + (y - b) 2 = r 2。其中,o是圆心,r 是半径。
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。
第一定义
在同一平面内到定点的距离等于定长的点的集合叫做圆 (circle)。这个定点叫做圆的圆心。
圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆。
圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。
第二定义
平面内一动点到两定点的距离平方之比,等于一个不为1的常数,则此动点的轨迹是圆。
证明:点坐标为(x1,y1)与(x2,y2),动点为(x,y),距离比为k,由两点距离公式。满足方程(x-x1)2 + (y-y1)2 = k2×[ (x-x2)2 + (y-y2)2] 当k不为1时,整理得到一个圆的方程。
几何法:假设定点为A,B,动点为P,满足|PA|/|PB| = k(k≠1),过P点作角APB的内、外角平分线,交AB与AB的延长线于C,D两点由角平分线性质,角CPD=90°。由角平分线定理:PA/PB = AC/BC = AD/BD =k,注意到唯一k确定了C和D的位置,C在线段AB内,D在AB延长线上,对于所有的P,P在以CD为直径的圆上。
圆和圆形没有区别。
圆形一般指圆(一种几何图形)在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个对称轴。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) 2 + (y - b) 2 = r 2。其中,o是圆心,r 是半径。
通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。
扩展资料:
一、圆(圆形)的特点:
1、圆上任意两点间的部分叫做圆弧,简称弧(arc)以“⌒”表示。
2、大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
3、在同圆或等圆中,能够互相重合的两条弧叫做等弧。
二、圆的周长公式:
圆周长的一半 c=πr;半圆的周长 c=πr+2r。
圆的定义:
第一定义:
在同一平面内到定点的距离等于定长的点的集合叫做圆(circle)。这个定点叫做圆的圆心。
圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆。
圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。
第二定义:
平面内一动点到两定点的距离平方之比,等于一个不为1的常数,则此动点的轨迹是圆。
证明:点坐标为(x1,y1)与(x2,y2),动点为(x,y),距离比为k,由两点距离公式。满足方程(x-x1)2 + (y-y1)2 = k2×[ (x-x2)2 + (y-y2)2] 当k不为1时,整理得到一个圆的方程。
几何法:假设定点为A,B,动点为P,满足|PA|/|PB| = k(k≠1),过P点作角APB的内、外角平分线,交AB与AB的延长线于C,D两点由角平分线性质,角CPD=90°。由角平分线定理:PA/PB = AC/BC = AD/BD =k,注意到唯一k确定了C和D的位置,C在线段AB内,D在AB延长线上,对于所有的P,P在以CD为直径的圆上。
圆的性质:
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
圆的周长: c=2πr=πd
半圆的周长:c=πr+2r
圆面积:S=πr2
半圆的面积:S=(πr2)÷2
圆环面积: S大圆-S小圆=π(R2-r2)(R大圆半径)
半圆周长=π×r+d
注:
圆的半径:r
直径:d
圆周率:π(3.1415926……)
圆的性质:
1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
2、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
3、如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
4、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等。
5、内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
圆的特点:
1.圆有无数条半径和无数条直径,且同圆内圆的半径长度永远相同。
2.圆是轴对称、中心对称图形。
3.对称轴是直径所在的直线。
4.是一条光滑且封闭的曲线,圆上每一点到圆心的距离都是相等,到圆心的距离为R的点都在圆上。
扩展资料:
一、圆的一般方程
方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)2+(y+E/2)2=(D2+E2-4F)/4.故有:
1、当D2+E2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以
为半径的圆;
2、当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2);
3、当D2+E2-4F<0时,方程不表示任何图形。
二、圆的参数方程:
以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r·cosθ, y=b+r·sinθ, (其中θ为参数)
圆的端点式:
若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆 x2+y2=r2上一点M(a0,b0)的切线方程为 a0·x+b0·y=r2
在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0·x+b0·y=r2。
三、割线定理
割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
一条直线与一条弧线有两个公共点,我们就说这条直线是这条曲线的割线。
与割线有关的定理有:割线定理、切割线定理。常运用于有关于圆的题中。
参考资料来源:百度百科-圆
(●)就是这个啊,不过我是复制的,不会打我玩CF时,搜索一个好友名字时,这个符号不会打最好要是容易点的,我的输入法是搜狗的如果回答好的话,我会加20悬赏...
(●)就是这个啊,不过我是复制的,不会打
我玩CF时,搜索一个好友名字时,这个符号不会打
最好要是容易点的,我的输入法是搜狗的
如果回答好的话,我会加20悬赏
实心的圆可以在word文档里面的特殊字符插入。具体操作步骤如下:
1、新建一个word并打开,再点击插入;
2、接着点击符号/其他符号;
3、在弹出来的符号窗口里面,字体选择“Wingdings”;
4、接着在下面找到实心圆的符号,鼠标点击选中它,再点击插入,然后关闭窗口就可以输入了;
5、按照上述步骤打出来的实心圆效果如下。
自圆其说、圆颅方趾、破镜重圆、功德圆满、花好月圆、字正腔圆、膀大腰圆、骨肉团圆、明月不常圆、蛾眉倒蹙,凤眼圆睁、圆首方足、珠圆玉润、凿圆枘方、拟规画圆、玉润珠圆、毁方投圆、好梦难圆、外圆内方、智圆行方、破觚为圆、不以规矩,不能成方圆、事缓则圆、右手画圆,左手画方,功行圆满、指方画圆等。
一、圆孔方木 [ yuán kǒng fāng mù ]
【解释】:把方木头放到圆孔里去。比喻二者不能投合。
【出自】:宋·释道原《景德传灯录》:“若将有限心识作无限中用,如将方木逗圆孔。”
【译文】:如果将要有限的精力放在无限的事情中,就像是把方木头放到圆孔里去一样。
二、好梦难圆 [ hǎo mèng nán yuán ]
【解释】:比喻好事难以实现。
【出自】:明·汤显祖《紫钗记·剑合钗圆》:“彩云轻散,好梦难圆。”
【译文】:天上的云彩渐渐的散开了,好的事情真的很难实现。
三、功行圆满 [ gōng xíng yuán mǎn ]
【解释】:功:功绩、僧道等修行的功夫;行:善行。封建迷信指功德成就,道行圆满。
【出自】:元·岳伯川《铁拐李》楔子:“等他功成行满,贫道再去点化他。”
四、右手画圆,左手画方[ yòu shǒu huà yuán,zuǒ shǒu huà fāng ]
【解释】:比喻用心不专,什么事也办不成。也形容心思聪明,动作敏捷。
【出自】:战国时期韩非《韩非子·功名》:“右手画圆,左手画方,不能两成。”
【译文】:用右手画圆的同时,用左手画方,这二件事情不能一起办得成。
五、不以规矩,不能成方圆[ bù yǐ guī jǔ,bù néng chéng fāng yuán ]
【解释】:比喻做事要遵循一定的法则。
【出自】:战国孟子《孟子·离娄上》:“离娄之明,公输子之巧,不以规矩,不能成方圆。”
【译文】:即便有离娄的目力,有鲁班的技巧,如果不用圆规或曲尺,也不能正确地画出圆形或方形。
是定义,不是计算公式...
是定义,不是计算公式
圆面积是指圆形所占的平面空间大小,常用S表示。圆是一种规则的平面几何图形,其计算方法有很多种,比较常见的是开普勒的求解方法,卡瓦利里的求解方法等。
公式推导
圆周长(c):圆的直径(D),那圆的周长(c)除以圆的直径(D)等于π,那利用乘法的意义,就等于 π乘圆的直径(D)等于圆的周长(C),C=πd。
而同圆的直径(D)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以π。
扩展资料
圆的来源:
古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。
圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。
参考资料来源:百度百科—圆面积
特征:
1.圆有无数条半径和无数条直径,且同圆内圆的半径长度永远相同。
2.圆是轴对称、中心对称图形。
3.对称轴是直径所在的直线。
扩展资料:
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) 2 + (y - b) 2 = r 2。其中,o是圆心,r 是半径。
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。
圆的周长公式
圆的周长:
圆周长的一半 c=πr
半圆的周长 c=πr+2r
参考资料百度百科:园
请问圆的概念们:弦?弧长等?谢谢!...
请问圆的概念们:弦? 弧长等?
谢谢!
连接圆上任意两点的线段叫做弦。
连接圆上任意两点的线段叫做弦(chord),在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
圆的任何弦的垂直平分线都会通过圆心。圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)
弧长:一般指半径为R的圆中,n°的圆心角所对弧长为nπR/180°,广义上指光滑曲线的弧长。
扩展资料
相关特点
一、径
1、连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)
2、通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。圆的直径 d=2r
二、角
1、顶点在圆心上的角叫做圆心角(central angle)。
2、顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
三、圆周率
圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用字母π表示。
π≈3.141592657......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍。
四、形
1、由弦和它所对的一段弧围成的图形叫做弓形。
2、由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做扇形(sector)。