√表示根号
把一个半径为R的球的上半球横向切成n(无穷大)份, 每份等高
并且把每份看成一个类似圆台,其中半径等于该类似圆台顶面圆半径
则从下到上第k个类似圆台的侧面积S(k)=2πr(k)×h
其中r(k)=√[R^2-﹙kh)^2],
h=R^2/{n√[R^2-﹙kh)^2}.
S(k)=2πr(k)h=(2πR^2)/n则 S=S(1)+S(2)+……+S(n)= 2πR^2;
乘以2就是整个球的表面积 4πR^2;
可以把半径为R的球看成像洋葱一样分成n层,每层厚为 = ,设第k层与球心的距离为r=r(k)=k ,面积为一个关于r(k)的函数设为S(r),则k层的体积V(k)=S(r)* ,所以V= V(k)= S(k )* = S(r)*Δr= ,也就是V(r)= ,有可以知道V(r)=4/3πr^3,所以同时求导就可得S(r)=4πr^2,
公式中R为球的半径,S为球的表面积,π为圆周率。
关于圆的公式以及概念:
1、 连接圆心和圆上任意一点的线段叫半径。
2、 通过圆心并且两端都在圆上的线段叫直径,用字母d 表示。
3、 圆有无数条直径,并且在同一个圆里所有直径都相等,所有半径也都相等。
4、 圆是轴对称图形,直径所在直线为圆的对称轴。
5、 圆周长除以直径所得商为圆周率,用字母∏表示,它是一个固定的数,并且是一个无限不循环小数。π通常元等于3.14。
6、 将一个圆平均分成若干份,可拼成一个近似长方形,长方形长是圆周长的一半,用字母πr 表示,宽是圆的半径,用字母r 表示,因为长方形面积=长×宽,所以圆面积S=πr ×r=πr 2。长方形的周长比圆的周长多一条直径,C 长方形=8.28r
7、 公式 C=πd C=2πr C 半圆=πd ÷2+d=2.57d C 半圆=πr+2r=5.14r d=C÷π d=2r
S 环=π×(R2-r 2) r=C÷π÷2 r=d÷2 S=πr 2 S 半圆=πr 2÷2
用^表示平方
把一个半径为R的球的上半球切成n份 每份等高
并且把每份看成一个圆柱,其中半径等于其底面圆半径
则从下到上第k个圆柱的侧面积S(k)=2πr(k)*h
其中h=R/n r(k)=根号[R^-(kh)^]
S(k)=根号[R^-(kR/n)^]*2πR/n
=2πR^*根号[1/n^-(k/n^)^]
则 S(1)+S(2)+……+S(n) 当 n 取极限(无穷大)的时候就是半球表面积2πR^
乘以2就是整个球的表面积 4πR^
对球的体积公式求导就可以推导出球的表面积公式。
也可以利用周长公式计算球的表面积
√表示根号
把一个半径为R的球的上半球横向切成n(无穷大)份, 每份等高
并且把每份看成一个类似圆台,其中半径等于该类似圆台顶面圆半径
则从下到上第k个类似圆台的侧面积
S(k)=2πr(k)×h
其中r(k)=√[R^2-﹙kh)^2],
h=R^2/{n√[R^2-﹙kh)^2}.
S(k)=2πr(k)h=(2πR^2)/n则 S=S(1)+S(2)+……+S(n)= 2πR^2;
乘以2就是整个球的表面积 4πR^2;
让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。
以x为积分变量,积分限是[-R,R]。
在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长。
所以球的表面积S=∫<-R,R>2π×y×√(1+y'^2)dx,整理一下即得到S=4πR
公式证明
√表示根号
运用第一数学归纳法:把一个半径为R的球的上半球横向切成n份, 每份等高
并且把每份看成一个圆柱,其中半径等于其底面圆半径
则从下到上第k个圆柱的侧面积S(k)=2πr(k)×h
其中h=R/n ,r(k)=√[R²-﹙kh﹚²]
S(k)=√[R²-(kR/n)²]×2πR/n
=2πR²×√[1/n²-(k/n²)²]
则 S(1)+S(2)+……+S(n) 当 n 取极限(无穷大)的时候,半球表面积就是2πR²
乘以2就是整个球的表面积 4πR²。
参考资料:百度百科
取微圆环,圆心角θ~θ+dθ,
则微圆环面积dS=2πRsinθ*Rdθ,
球面积S=∫dS=∫2πR2sinθ*dθ(从0积到π)=-2πR2cosθ|(下0上π)=4πR2
应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料
利用周长公式计算球的表面积
√表示根号
把一个半径为R的球的上半球横向切成n(无穷大)份, 每份等高
并且把每份看成一个类似圆台,其中半径等于该类似圆台顶面圆半径
则从下到上第k个类似圆台的侧面积S(k)=2πr(k)h
h=R^2/{n√[R^2-﹙kh)^2}.
S(k)=2πr(k)h=(2πR^2)/n则 S=S(1)+S(2)+……+S(n)= 2πR^2;
乘以2就是整个球的表面积 4πR^2;
参考资料来源:百度百科——球体表面积
把微元面积当圆台处理。圆台的侧面积公式=(上周长+下周长)/2 X 母线长,这母线长就是弧元长ds。得来全不费功夫,总是找到理论根据了哈。下面是正式的圆台公式:
圆台侧面积s=π(r1+r2)√((r1-r2)^2+h^2)
圆台的体积v=πh/3(r1^2+r1r2+r2^2)
截面近似圆台的上半径r1=y+dy,下半径 r2=y, 高h=dx
表面积微元 dS=π(y+y+dy)√(dx^2+dy^2)=π(2y+dy)√(dx^2+dy^2)
体积的微元 dV=πdx/3(y^2+y(y+dy)+(y+dy)^2) =π/3(3y^2+3ydy+dy^2)dx
舍掉二阶无穷小项,有:
体积 dV=πy^2 dx,表面积 dS=2πy √(dx^2+dy^2)
所有的谜团都完美解决,也掌握微元的推导方法,对微元计算不可凭想象胡猜。那篇文章总算点到要点了,圆台侧面积公式是关键。圆台的侧面积公式=(上半径+下半径)X π X 母线长。母线长就是积分中的弧元长, 这应该满意了吧。这个问题就算彻底解决了,用积分解决问题的水平大大提高。
五、求微元的方法
我们求积分,必须先求微元,如果球表面积的微元用周长乘以高来积分,就犯了荒唐错误,而有时某情况正确,恰是碰巧如球体积,所以,从这个可笑事件中是必须吸取瞎猜的教训,要掌握好微元的正确推导方法。
如积分求曲线与X轴围成的面积,当然可以直接写成积分S=∫ydx,但我们仍然用微元推导,微元是个“直角梯形”:下底y,上底y+dy,高dx ,则微元:
dS=(y+y+dy)/2 dx=(y+1/2dy)dx
去掉二级无穷小, dS=ydx S=∫ydx
再如,曲线长度的微元就是直角三角形的斜边,符合勾股定理,
曲线长度dL=√(dx^2+dy^2)。L=∫√(dx^2+dy^2)=∫√(1+y'^2)dx
球的截面微元是个圆台, 圆台的体积v=πh/3(r1^2+r1r2+r2^2)
球体积的微元 dV=πy^2 dx。V=π∫y^2dx
表面积微元是圆元的侧面积, 圆台侧面积s=π(r1+r2)√((r1-r2)^2+h^2)
球表面积微元 dS=2πy √(dx^2+dy^2)。
S=2π∫y√(dx^2+dy^2)=2π∫y√(1+y'^2)dx
这样,微元以三角形、梯形、圆台等方式用合法公式推导,我们就不会再犯低级的主观错误。
注:有网友问 √(dx^2+dy^2)这是不是二阶无穷小? 答:不是,平方再开方,是一阶无穷小了。多总结,悟吧。这上面一大段是我悟出的,书上也没有。
1、球表面积公式:
公式中R为球的半径,S为球的表面积。
2、球的体积公式的推导
基本思想方法:
先用过球心 的平面截球 ,球被截面分成大小相等的两个半球,截面⊙ 叫做所得半球的底面.
(l)第一步:分割.
用一组平行于底面的平面把半球切割成 层.
(2)第二步:求近似和.
每层都是近似于圆柱形状的“小圆片”,我们用小圆柱形的体积近似代替“小圆片”的体积,它们的和就是半球体积的近似值.
(3)第三步:由近似和转化为精确和.
当无限增大时,半球的近似体积就趋向于精确体积.
定积分的应用:旋转面的面积。好多课本上都有,推导方法借助于曲线的弧长。
让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。
以x为积分变量,积分限是[-R,R]。
在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长。
所以球的表面积S=∫<-R,R>2π×y×√(1+y'^2)dx,整理一下即得到S=4πR^2。
扩展
我为什么求出S=π^2 R^2
补充
这。。。表示,我也是参考的,这个计算有点麻烦。。。
参考资料:http://iask.sina.com.cn/b/8084885.html